The subject this volume is explicit integration, that is, the analytical as opposed to the numerical solution, of all kinds of nonlinear differential equations (ordinary differential, partial differential, finite difference). Such equations describe many physical phenomena, their analytic solutions (particular solutions, first integral, and so forth) are in many cases preferable to numerical computation, which may be long, costly and, worst, subject to numerical errors. In addition, the analytic approach can provide a global knowledge of the solution, while the numerical approach is always local. Explicit integration is based on the powerful methods based on an indepth study of singularities, that were first used by Poincaré and subsequently developed by Painlevé in his famous Leçons de Stockholm of 1895. The recent interest in the subject and in the equations investigated by Painlevé dates back about thirty years ago, arising from three, apparently disjoint, fields: the Ising model of statistical physics and field theory, propagation of solitons, and dynamical systems. The chapters in this volume, based on courses given at Cargèse 1998, alternate mathematics and physics; they are intended to bring researchers entering the field to the level of present research.

Authors: Conte R.  Pages: 417 Year: 1999 
Tags: century property painleve   Customers who bought this item also bought: 